Use this URL to cite or link to this record in EThOS:
Title: The role of muscleblind-like proteins in myotonic dystrophy
Author: Arya, Sukrat
ISNI:       0000 0004 5361 4663
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Myotonic dystrophy (DM) is a progressive multisystemic genetic disorder which is inherited as an autosomal dominant trait. There are two subtypes of the disorder, DM type 1 and DM type 2. DM type1 is caused by an expansion of a CTG repeat located in the 3' untranslated region of the DMPK gene on chromosome 19q13.3, whereas DM type 2 is caused by a CCTG expansion in intron 1 of ZNF9 gene located on chromosome 3q. The mutant RNAs containing the expanded CTG/CCTG repeats alters the activity of various alternative splicing factors like Muscleblind-like (MBNL) proteins, which are sequestered in the ribonuclear foci in nucleus by the expanded mutant transcripts resulting in a number of splicing defects observed in DM patients. In first part of my thesis, I have assessed the nuclear and cytosolic distribution of MBNL proteins in both normal and DM cells. In both DM1 and DM2 cells the amount of nuclear MBNL1 was found to be at least 50% greater than seen in normal cells. In addition to this, I studied the distribution of MBNL1 protein in nuclear and cytosolic fractions of DM cells before and after treatment with compounds chromomycin A3, gemcitabine, IMOX, RO 31-8220 and hypericin which were highlighted in the primary screen. Treatment with the compounds produced a significant reduction in the proportion of nuclear MBNL1 compared to DMSO treated cells in DM fibroblast and myoblasts. In second part of this thesis I have examined the effect of MBNL1/2 down regulation on both RNA and MBNL1 foci in DM cells. MBNL1 and MBNL2 double knockdown resulted in a 40% increase of nuclear RNA foci than observed in scrambled siRNA treated cells, though a significant reduction was observed in case of MBNL (protein) foci. Also, MBNL 1 and MBNL2 down regulation did not result in the release of mutant transcript from the nucleus to the cytoplasm in KB-Telo MyoD (DM) cells as seen in BpmI restriction polymorphism assay. However, it had a degradative effect on the mutant DMPK transcript.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: RC Internal medicine ; WE Muscoskeletal system