Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.632500
Title: Treatment of produced water by simultaneous removal of heavy metals and dissolved polycyclic aromatic hydrocarbons in a photoelectrochemical cell
Author: Igunnu, Ebenezer Temitope
ISNI:       0000 0004 5361 3919
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Early produced water treatment technologies were developed before carbon dioxide emissions and hazardous waste discharge were recognised as operational priority. These technologies are deficient in the removal of dissolved hydrocarbons and dissolved heavy metal ions which have been identified as major contributors to the high environmental impact factor of produced water. The simultaneous removal of heavy metals and polycyclic aromatic hydrocarbon (PAH) from produced water via photoelectrochemical process was identified in this work as a produced water treatment alternative with the potential to virtually eliminate the cost for chemical reagents and high energy input. Several grades of simulated produced water were synthesised and used to understand different parameters necessary for developing a successful photoelectrochemical treatment. The process demonstrated in this work followed a simple two–electrode photoelectrochemical cell where heavy metals were recovered on a platinum electrode with simultaneous degradation of PAH (phenanthrene) on a photoanode, with the aid of sunlight (simulated) and an applied cell voltage of 1.0 V. Multiwall CNT-TiO2 synthesised via a modified sol-gel method served as the photoanode after it was immobilised at a loading of 2.5 mg/cm2 on a titanium plate. The results obtained from the photoelectrochemical treatment showed a recovery of 1.6 g/cm2 of lead, 0.2 g/cm2 of copper and 0.1 g/cm2 of nickel from produced water on a 0.1 cm diameter platinum electrode after 24 hours of irradiation with simulated sunlight at 1.0 V cell voltage and a simultaneous degradation of up to 16 % phenanthrene on the photoanode, which gives a potential of scaling up the process to a commercial throughput.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.632500  DOI: Not available
Keywords: TN Mining engineering. Metallurgy
Share: