Use this URL to cite or link to this record in EThOS:
Title: Low-rank and sparse reconstruction in dynamic magnetic resonance imaging via proximal splitting methods
Author: Tremoulheac, Benjamin R.
ISNI:       0000 0004 5359 2935
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Dynamic magnetic resonance imaging (MRI) consists of collecting multiple MR images in time, resulting in a spatio-temporal signal. However, MRI intrinsically suffers from long acquisition times due to various constraints. This limits the full potential of dynamic MR imaging, such as obtaining high spatial and temporal resolutions which are crucial to observe dynamic phenomena. This dissertation addresses the problem of the reconstruction of dynamic MR images from a limited amount of samples arising from a nuclear magnetic resonance experiment. The term limited can be explained by the approach taken in this thesis to speed up scan time, which is based on violating the Nyquist criterion by skipping measurements that would be normally acquired in a standard MRI procedure. The resulting problem can be classified in the general framework of linear ill-posed inverse problems. This thesis shows how low-dimensional signal models, specifically lowrank and sparsity, can help in the reconstruction of dynamic images from partial measurements. The use of these models are justified by significant developments in signal recovery techniques from partial data that have emerged in recent years in signal processing. The major contributions of this thesis are the development and characterisation of fast and efficient computational tools using convex low-rank and sparse constraints via proximal gradient methods, the development and characterisation of a novel joint reconstruction–separation method via the low-rank plus sparse matrix decomposition technique, and the development and characterisation of low-rank based recovery methods in the context of dynamic parallel MRI. Finally, an additional contribution of this thesis is to formulate the various MR image reconstruction problems in the context of convex optimisation to develop algorithms based on proximal splitting methods.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available