Use this URL to cite or link to this record in EThOS:
Title: Towards efficient neurosurgery : image analysis for interventional MRI
Author: Daga, P.
ISNI:       0000 0004 5358 6084
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Interventional magnetic resonance imaging (iMRI) is being increasingly used for performing imageguided neurosurgical procedures. Intermittent imaging through iMRI can help a neurosurgeon visualise the target and eloquent brain areas during neurosurgery and lead to better patient outcome. MRI plays an important role in planning and performing neurosurgical procedures because it can provide highresolution anatomical images that can be used to discriminate between healthy and diseased tissue, as well as identify location and extent of functional areas. This is of significant clinical utility as it helps the surgeons maximise target resection and avoid damage to functionally important brain areas. There is clinical interest in propagating the pre-operative surgical information to the intra-operative image space as this allows the surgeons to utilise the pre-operatively generated surgical plans during surgery. The current state of the art neuronavigation systems achieve this by performing rigid registration of pre-operative and intra-operative images. As the brain undergoes non-linear deformations after craniotomy (brain shift), the rigidly registered pre-operative images do not accurately align anymore with the intra-operative images acquired during surgery. This limits the accuracy of these neuronavigation systems and hampers the surgeon’s ability to perform more aggressive interventions. In addition, intra-operative images are typically of lower quality with susceptibility artefacts inducing severe geometric and intensity distortions around areas of resection in echo planar MRI images, significantly reducing their utility in the intraoperative setting. This thesis focuses on development of novel methods for an image processing workflow that aims to maximise the utility of iMRI in neurosurgery. I present a fast, non-rigid registration algorithm that can leverage information from both structural and diffusion weighted MRI images to localise target lesions and a critical white matter tract, the optic radiation, during surgical management of temporal lobe epilepsy. A novel method for correcting susceptibility artefacts in echo planar MRI images is also developed, which combines fieldmap and image registration based correction techniques. The work developed in this thesis has been validated and successfully integrated into the surgical workflow at the National Hospital for Neurology and Neurosurgery in London and is being clinically used to inform surgical decisions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available