Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.631939
Title: Imaging structural connections of the brain in epilepsy
Author: Yogarajah, M.
ISNI:       0000 0004 5358 2868
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Introduction Temporal lobe epilepsy (TLE) is the most common cause of medically intractable partial epilepsy in adults. For many patients, anterior temporal lobe resection (ATLR) is an effective means of treatment, but can cause a significant decline in language or memory function, and visual field deficits. Diffusion tensor imaging and tractography is an MRI technique that can be used to probe white matter structure, and delineate the white matter tracts relevant to vision, language, and memory function. Aims We aimed to use diffusion MRI to increase understanding of the causes and consequences of TLE, and identify patients who are at risk of language, and visual impairment after surgery. Methods and Analysis Techniques Healthy controls, and patients with TLE were scanned pre- and post operatively using 3T MRI. All patients in the study underwent a comprehensive pre- and post-surgical evaluation including clinical, MRI, video-EEG, and neuropsychological assessment. Whole brain analysis of both pre-, and post-operative diffusion MRI was carried out. Tractography was used to assess white matter relevant to memory, language and vision. Correlation analysis of white matter data, and neuropsychological and clinical variables was carried out using the statistical software package, SPSS. Results and Discussion This thesis demonstrates the widespread changes in white matter microstructure present in patients with TLE, and the relationship between medial temporal lobe connections and memory function. It demonstrates how white matter microstructure changes after anterior temporal lobe resection, and how this information can be used to aid prediction of post-operative language deficits in patients. It concludes by showing that tractography can be used to predict postoperative visual field deficits. Conclusion Diffusion Mill can be used to increase our understanding of the causes and consequences of TLE, and to improve pre-surgical planning.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.631939  DOI: Not available
Share: