Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.631213
Title: Piezoelectric energy harvesting from low frequency and random excitation using frequency up-conversion
Author: Pillatsch, Pit
ISNI:       0000 0004 5355 7507
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
The field of energy harvesting comprises all methods to produce energy locally and from surrounding sources, e.g. solar illumination, thermal gradients, vibration, radio frequency, etc. The focus of this thesis is on inertial power generation from host motion, in particular for low frequency and random excitation sources such as the human body. Under such excitation, the kinetic energy available to be converted into electrical energy is small and conversion efficiency is of utmost importance. Broadband harvesting based on frequency tuning or on non-linear vibrations is a possible strategy to overcome this challenge. The technique of frequency up-conversion, where the low frequency excitation is converted to a higher frequency that is optimal for the operation of the transducer is especially promising. Regardless of the source excitation, energy is converted more efficiently. After a general introduction to the research area, two different prototypes based on this latter principle and using piezoelectric bending beams as transducers are presented, one linear design and one rotational. Especially for human motion, the advantages of rotational designs are discussed. Furthermore, magnetic coupling is used to prevent impact on the brittle piezoceramic material when actuating. A mathematical model, combining the magnetic interaction forces and the constitutive mechanical and electrical equations for the piezoelectric bending beam is introduced and the results are provided. Theoretical findings are supported by experimental measurements and the calculation model is validated. The outcome is the successful demonstration of a rotational energy harvester, tested on a custom made shaking set-up and in the real world when worn on the upper arm during running.
Supervisor: Yeatman, Eric ; Holmes, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.631213  DOI: Not available
Share: