Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.631042
Title: Orbital angular momentum entanglement in high dimensions
Author: Giovannini, Daniel
ISNI:       0000 0004 5355 1332
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Orbital angular momentum (OAM) is one of the most recently discovered properties of light, and it is only in the past decade its quantum properties have been the subject of experimental investigations and have found applications. Unlike polarization, which is only bidimensional, orbital angular momentum provides, with relative ease, unprecedented access to a theoretically unbounded discrete state space. The process of spontaneous parametric down-conversion has long been used as a source of two-photon states that can be entangled in several degrees of freedom, including OAM. In this thesis, the properties of the natural OAM spectrum associated with the entangled states produced by parametric down-conversion were investigated. Chapters 2 and 3 describe the production and detection of tunable high-dimensional OAM entanglement in a down-conversion system. By tuning the phase-matching conditions and improving the detection stage, a substantial increase in the half-width of the OAM correlation spectrum was observed. The conjugate variable of OAM, angular position, was also considered when examining high-dimensional states entangled in OAM. In order to efficiently determine their dimension, high-dimensional entangled states were probed by implementing a technique based on phase masks composed of multiple angular sectors, as opposed to narrow single-sector analysers. Presented in chapter 4, this technique allows the measurements of tight angular correlations while maintaining high optical throughput. The states so produced were then used for a number of applications centred around the concept of mutually unbiased bases. One can define sets of mutually unbiased bases for arbitrary subspaces of the OAM state space. Two bases are mutually unbiased if the measurement of a state in one basis provides no information about the state as described in the other basis. Complete measurements in mutually unbiased bases of high-dimensional OAM spaces are presented in chapter 5. Measurements in sets of mutually unbiased bases are integral to quantum science and can be used in a variety of protocols that fully exploit the large size of the OAM state space; we describe their use in efficient quantum state tomography, quantum key distribution and entanglement detection. Caution is however necessary when dealing with state spaces embedded in higher-dimensional spaces, such as that provided by OAM. Experimental tests of Bell-type inequalities allow us to rule out local hidden variable theories in the description of quantum correlations. Correlations inconsistent with the states observed, or even with quantum mechanics, known as super-quantum correlations, have however been recorded previously in experiments that fail to comply with the fair-sampling conditions. Chapter 6 describes an experiment that uses a particular choice of transverse spatial modes for which super-quantum correlations persist even if the detection is made perfectly efficient. The sets of modes carrying OAM allow a complete description of the transverse field. The ability to control and combine additional degrees of freedom provides the possibility for richer varieties of entanglement and can make quantum protocols more powerful and versatile. One such property of light, associated with transverse modes possessing radial nodes in the field distribution, can be accessed within the same type of experimental apparatus used for OAM. In chapter 7, the radial degree of freedom is explored, together with OAM, in the context of Hong-Ou-Mandel interference.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.631042  DOI: Not available
Keywords: QC Physics
Share: