Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.630408
Title: Cross-lingual genre classification
Author: Petrenz, Philipp
ISNI:       0000 0004 5353 6423
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Automated classification of texts into genres can benefit NLP applications, in that the structure, location and even interpretation of information within a text are dictated by its genre. Cross-lingual methods promise such benefits to languages which lack genre-annotated training data. While there has been work on genre classification for over two decades, none has considered cross-lingual methods before the start of this project. My research aims to fill this gap. It follows previous approaches to monolingual genre classification that exploit simple, low-level text features, many of which can be extracted in different languages and have similar functions. This contrasts with work on cross-lingual topic or sentiment classification of texts that typically use word frequencies as features. These have been shown to have limited use when it comes to genres. Many such methods also assume cross-lingual resources, such as machine translation, which limits the range of their application. A selection of these approaches are used as baselines in my experiments. I report the results of two semi-supervised methods for exploiting genre-labelled source language texts and unlabelled target language texts. The first is a relatively simple algorithm that bridges the language gap by exploiting cross-lingual features and then iteratively re-trains a classification model on previously predicted target texts. My results show that this approach works well where only few cross-lingual resources are available and texts are to be classified into broad genre categories. It is also shown that further improvements can be achieved through multi-lingual training or cross-lingual feature selection if genre-annotated texts are available in several source languages. The second is a variant of the label propagation algorithm. This graph-based classifier learns genre-specific feature set weights from both source and target language texts and uses them to adjust the propagation channels for each text. This allows further feature sets to be added as additional resources, such as Part of Speech taggers, become available. While the method performs well even with basic text features, it is shown to benefit from additional feature sets. Results also indicate that it handles fine-grained genre classes better than the iterative re-labelling method.
Supervisor: Webber, Bonnie; Lavrenko, Victor Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.630408  DOI: Not available
Keywords: genre ; cross-lingual ; text classification
Share: