Use this URL to cite or link to this record in EThOS:
Title: Pattern recognition systems design on parallel GPU architectures for breast lesions characterisation employing multimodality images
Author: Sidiropoulos, Konstantinos
ISNI:       0000 0004 5351 278X
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
The aim of this research was to address the computational complexity in designing multimodality Computer-Aided Diagnosis (CAD) systems for characterising breast lesions, by harnessing the general purpose computational potential of consumer-level Graphics Processing Units (GPUs) through parallel programming methods. The complexity in designing such systems lies on the increased dimensionality of the problem, due to the multiple imaging modalities involved, on the inherent complexity of optimal design methods for securing high precision, and on assessing the performance of the design prior to deployment in a clinical environment, employing unbiased system evaluation methods. For the purposes of this research, a Pattern Recognition (PR)-system was designed to provide highest possible precision by programming in parallel the multiprocessors of the NVIDIA’s GPU-cards, GeForce 8800GT or 580GTX, and using the CUDA programming framework and C++. The PR-system was built around the Probabilistic Neural Network classifier and its performance was evaluated by a re-substitution method, for estimating the system’s highest accuracy, and by the external cross validation method, for assessing the PR-system’s unbiased accuracy to new, “unseen” by the system, data. Data comprised images of patients with histologically verified (benign or malignant) breast lesions, who underwent both ultrasound (US) and digital mammography (DM). Lesions were outlined on the images by an experienced radiologist, and textural features were calculated. Regarding breast lesion classification, the accuracies for discriminating malignant from benign lesions were, 85.5% using US-features alone, 82.3% employing DM-features alone, and 93.5% combining US and DM features. Mean accuracy to new “unseen” data for the combined US and DM features was 81%. Those classification accuracies were about 10% higher than accuracies achieved on a single CPU, using sequential programming methods, and 150-fold faster. In addition, benign lesions were found smoother, more homogeneous, and containing larger structures. Additionally, the PR-system design was adapted for tackling other medical problems, as a proof of its generalisation. These included classification of rare brain tumours, (achieving 78.6% for overall accuracy (OA) and 73.8% for estimated generalisation accuracy (GA), and accelerating system design 267 times), discrimination of patients with micro-ischemic and multiple sclerosis lesions (90.2% OA and 80% GA with 32-fold design acceleration), classification of normal and pathological knee cartilages (93.2% OA and 89% GA with 257-fold design acceleration), and separation of low from high grade laryngeal cancer cases (93.2% OA and 89% GA, with 130-fold design acceleration). The proposed PR-system improves breast-lesion discrimination accuracy, it may be redesigned on site when new verified data are incorporated in its depository, and it may serve as a second opinion tool in a clinical environment.
Supervisor: Stonham, J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Medical image analysis ; Breast cancer ; Parallel processing ; Graphics processing units ; Probabilistic neural networks