Use this URL to cite or link to this record in EThOS:
Title: Remote online machine condition monitoring using advanced internet, wireless and mobile communication technologies
Author: Peng, W.
Awarding Body: Nottingham Trent University
Current Institution: Nottingham Trent University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
A conceptual model with wireless and mobile techniques is developed in this thesis for remote real-time condition monitoring, which is applied for monitoring, diagnosing, and controlling the working conditions of machines. The model has the following major functions: data acquisition, data processing, decision making, and remote communication. The data acquisition module is built up within this model using the sensory technique and data I/O interfaces to acquire the working conditions data of a machine and extract the physical information about the machine (e.g. failure, wear, etc.) for data processing and decision making. The data processing is conducted using digital conversion and feature extraction to process the received analogue condition data and convert the data into the physical quantities of working condition of the machine for sequent fault diagnosis. A real-time fault diagnostic scheme for decision-making is applied based on digital filtering and pattern classification to real-time identify the fault symptom of the machine and provide advice for decision making for maintenance. Process control is implemented to control the operation status of the machine automatically, inform the maintenance personnel diagnostic results and alert the working conditions of the machine. Remote communication with wireless and mobile features greatly advance the machine’s condition monitoring technology with real-time fault diagnostic capacity, by providing a wireless-based platform to enable the implementation of data acquisition, real-time fault diagnosis, and decision making through the Internet, wireless, and mobile phone network. The model integrating above techniques and methods has been applied into the following three areas: (1) Development of a Remote Real-time Condition Monitoring System of Industrial Gearbox, supported by the Stimulation Innovation Success programme (2007-2008); (2) Development of a Remote Control System of Solid Desiccant Dehumidifier for Air Conditioning in Low Carbon Emission Buildings, supported by the Sustainable Construction iNET programme (2009-2010); (3) Development of an Innovative Remote Monitoring System of Thermo-Electric-Generations, supported by the Sustainable Construction iNET programme (2010-2011). The combination of wireless and mobile techniques with data acquisition, real-time fault diagnosis, and decision-making, into a model for remote real-time condition monitoring is a novel contribution to this area.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available