Use this URL to cite or link to this record in EThOS:
Title: Behaviour of uniformly dimpled colloidal particles
Author: Ivell, Samantha
ISNI:       0000 0004 5365 5895
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Uniformly dimpled colloidal particles are studied using laser scanning confocal microscopy and optical tweezing, alongside real-space image analysis. In particular, a comparison is made between the behaviour of these particles with that of isotropic spherical particles of the same size and polydispersity. We begin by detailing the synthetic techniques as well as the methods used for both experiments and simulations in this work. We then probe the structures and ordering exhibited by the dimpled particles and their spherical counterparts at a single featureless wall. Only the first layer at the wall is observed, and pronounced differences in both the translational and orientational order between the two types of particle is found. Furthermore, we show that the presence of the dimple leads to disordered structures that develop over time. Next, we reduce the dimensionality of the system to quasi-two and study the depletion induced interactions in a monolayer of colloidal particles at a single featureless wall. Using both confocal microscopy and Monte Carlo simulations, we illustrate the selectivity of the depletion interaction with regard to particle shape and polymer size. A level of complexity is then added to the problem by introducing a second colloidal system of small spherical particles. The resulting binary mixture, still with additional non-adsorbing polymer and in a monolayer at a wall, allows us to investigate so-called “lock and key” binding. We show that the inclusion of a lock particle cavity, whose shape and size is complementary to those of the key particle, significantly favours binding behaviour, which is further improved by using a depletant consisting of a small polymer and charge-screening salt. Finally, the depletion induced force between lock and key particles at contact is directly measured using optical tweezers. The dependence of the force due to depletion upon the overlap volume between the particles is illustrated, and we find that the strongest force is produced when the key is held within the cavity of the dimpled lock, demonstrating semiquantitative agreement with theoretical predictions.
Supervisor: Aarts, Dirk Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Physical & theoretical chemistry ; colloids ; soft matter