Use this URL to cite or link to this record in EThOS:
Title: Statistical methods for mapping complex traits
Author: Allchin, Lorraine Doreen May
ISNI:       0000 0004 5365 2598
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
The first section of this thesis addresses the problem of simultaneously identifying multiple loci that are associated with a trait, using a Bayesian Markov Chain Monte Carlo method. It is applicable to both case/control and quantitative data. I present simulations comparing the methods to standard frequentist methods in human case/control and mouse QTL datasets, and show that in the case/control simulations the standard frequentist method out performs my model for all but the highest effect simulations and that for the mouse QTL simulations my method performs as well as the frequentist method in some cases and worse in others. I also present analysis of real data and simulations applying my method to a simulated epistasis data set. The next section was inspired by the challenges involved in applying a Markov Chain Monte Carlo method to genetic data. It is an investigation into the performance and benefits of the Matlab parallel computing toolbox, specifically its implementation of the Cuda programing language to Matlab's higher level language. Cuda is a language which allows computational calculations to be carried out on the computer's graphics processing unit (GPU) rather than its central processing unit (CPU). The appeal of this tool box is its ease of use as few code adaptions are needed. The final project of this thesis was to develop an HMM for reconstructing the founders of sparsely sequenced inbred populations. The motivation here, that whilst sequencing costs are rapidly decreasing, it is still prohibitively expensive to fully sequence a large number of individuals. It was proposed that, for populations descended from a known number of founders, it would be possible to sequence these individuals with a very low coverage, use a hidden Markov model (HMM) to represent the chromosomes as mosaics of the founders, then use these states to impute the missing data. For this I developed a Viterbi algorithm with a transition probability matrix based on recombination rate which changes for each observed state.
Supervisor: Holmes, Chris; Mott, Richard Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Mathematical genetics and bioinformatics (statistics) ; Bayesian statistics ; Markov chain Monte Carlo