Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627804
Title: Software architecture for capturing clinical information in hadron therapy and the design of an ion beam for radiobiology
Author: Abler, Daniel Jakob Silvester
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
Hadron Therapy (HT) exploits properties of ion radiation to gain therapeutic advantages over existing photon-based forms of external radiation therapy. However, its relative superiority and cost-effectiveness have not been proven for all clinical situations. Establishing a robust evidence base for the development of best treatment practices is one of the major challenges for the field. This thesis investigates two research infrastructures for building this essential evidence. First, the thesis develops main components of a metadata-driven software architecture for the collection of clinical information and its analysis. This architecture acknowledges the diversity in the domain and supports data interoperability by sharing information models. Their compliance to common metamodels guarantees that primary data and analysis results can be interpreted outside of the immediate production context. This is a fundamental necessity for all aspects of the evidence creation process. A metamodel of data capture forms is developed with unique properties to support data collection and documentation in this architecture. The architecture's potential to support complex analysis processes is demonstrated with the help of a novel metamodel for Markov model based simulations, as used for the synthesis of evidence in health-economic assessments. The application of both metamodels is illustrated on the example of HT. Since the biological effect of particle radiation is a major source of uncertainty in HT, in its second part, this thesis undertakes first investigations towards a new research facility for bio-medical experiments with ion beams. It examines the feasibility of upgrading LEIR, an existing accelerator at the European Organisation for Nuclear Research (CERN), with a new slow extraction and investigates transport of the extracted beam to future experiments. Possible configurations for the slow-resonant extraction process are identified, and designs for horizontal and vertical beam transport lines developed. The results of these studies indicate future research directions towards a new ion beam facility for biomedical research.
Supervisor: Peach, Ken; Davies, Jim Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.627804  DOI: Not available
Keywords: Particle physics ; Applications and algorithms ; Physics and CS ; Software engineering ; charged particle therapy ; evidence based medicine ; radiobiology ; ion beam ; synchrotron ; slow extraction ; beam transport ; health informatics ; software architectures ; system description languages ; metamodel ; domain-specific model ; model-driven engineering ; data capture ; case report form ; markov model
Share: