Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.626426
Title: Cognitive analysis of complex acoustic scenes
Author: Teki, S.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Natural auditory scenes consist of a rich variety of temporally overlapping sounds that originate from multiple sources and locations and are characterized by distinct acoustic features. It is an important biological task to analyze such complex scenes and extract sounds of interest. The thesis addresses this question, also known as the “cocktail party problem” by developing an approach based on analysis of a novel stochastic signal contrary to deterministic narrowband signals used in previous work. This low-level signal, known as the Stochastic Figure-Ground (SFG) stimulus captures the spectrotemporal complexity of natural sound scenes and enables parametric control of stimulus features. In a series of experiments based on this stimulus, I have investigated specific behavioural and neural correlates of human auditory figure-ground segregation. This thesis is presented in seven sections. Chapter 1 reviews key aspects of auditory processing and existing models of auditory segregation. Chapter 2 presents the principles of the techniques used including psychophysics, modeling, functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG). Experimental work is presented in the following chapters and covers figure-ground segregation behaviour (Chapter 3), modeling of the SFG stimulus based on a temporal coherence model of auditory perceptual organization (Chapter 4), analysis of brain activity related to detection of salient targets in the SFG stimulus using fMRI (Chapter 5), and MEG respectively (Chapter 6). Finally, Chapter 7 concludes with a general discussion of the results and future directions for research. Overall, this body of work emphasizes the use of stochastic signals for auditory scene analysis and demonstrates an automatic, highly robust segregation mechanism in the auditory system that is sensitive to temporal correlations across frequency channels.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.626426  DOI: Not available
Share: