Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625169
Title: Oligondendrocyte progenitors and their role in adult neural cell genesis
Author: Rivers, L.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2009
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Oligodendrocyte progenitors (OLPs) are widely distributed throughout the embryonic and adult central nervous system (CNS). They are the primary, possibly the only source of oligodendrocytes in the developing CNS and in the repair of demyelinated lesions, but it is unclear whether they continue to generate myelinating oligodendrocytes or any other cells in the normal healthy adult. A transgenic mouse line, Pdgfra-CreERT2, allowed temporally-controlled, permanent activation of YFP expression in PDGFRa-expressing OLPs and their differentiated progeny in the Rosa26-YFP reporter background. In vivo BrdU labelling and fate mapping of YFP-positive cells revealed that, in the corpus callosum, approximately half of the OLPs were dividing with a cell cycle time of approximately 8 days. Half of the daughter cells differentiated into myelinating oligodendrocytes, the others remained undifferentiated to maintain the OLP population. In the cortex, the majority of differentiated cells were SOX10+ non-myelinating oligodendrocyte-lineage cells of unknown function. In addition, YFP-labelled projection neurons accumulated in the piriform cortex (primary olfactory cortex). YFP-labelled astrocytes were not found anywhere in the forebrain. In collaboration with RMJ Franklin and colleagues (University of Cambridge) the fates of OLPs during repair of gliotoxin-induced demyelinated spinal cord lesions were investigated. In the lesions, OLPs generated mainly remyelinating oligodendrocytes and Schwann cells as well as a few astrocytes. Taken together, my in vivo Cre/lox fate-mapping studies showed that OLPs can differentiate into myelinating oligodendrocytes, non-myelinating oligodendrocytelineage cells, cortical projection neurons and - during remyelination - Schwann cells and astrocytes. Thus, OLPs possess multipotential stem cell-like properties in the adult mouse CNS.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.625169  DOI: Not available
Share: