Use this URL to cite or link to this record in EThOS:
Title: Identification and characterisation of novel plant specific regulators of cellular responses to double stranded DNA breaks
Author: Moore, Anne Margaret
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The ability of organisms to sense and respond to challenges to their genome integrity is key to survival. In particular, the ability to detect and respond to double-stranded DNA breaks (DSBs) is of fundamental importance as not only are DSBs potentially lethal as they can trigger apoptosis, but there is also the potential for the loss of genetic information. The response to DSBs is well conserved across Eukaryotes and comprises two stages: detection of the break and subsequent remedial action. The remedial action involves cell cycle arrest, DNA repair, and, if repair cannot be effected, possible apoptosis. Whilst many of the key components, especially in the initial detection of the break, are conserved there are also differences between plants and animals in some of the main components and their roles. In this thesis I have proposed an overall framework for the cellular response to DSBs in plants and have proposed two candidate genes, TCP20 and SOG1, as novel plant specific activators in this response. Their suitability has been addressed by considering their activation and their downstream targets. I have shown that TCP20 is necessary for growth arrest observed in shoot apical meristems after exposure to genotoxic stress. I have also shown that activation of one of the key targets of TCP20, CYCB1;1 requires TCP20 and that a key TCP20 binding motif in the promoter of CYCB1;1 is necessary for the up-regulation of CYCB1;1 in response to genotoxic stress. This motif is over-represented in the promoters of many of the genes involved in DNA damage repair, suggesting that TCP20 plays a role in the co-ordination of the cellular response to DSBs.
Supervisor: Doerner, Peter; Ingram, Gwyneth Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: DNA damage ; TCP20 ; SOG1 ; cell death ; CYCB1;1 ; genotoxic stress