Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619490
Title: Thin films of non-peripherally substituted liquid crystalline phthalocyanines A
Author: Pal, Chandana
ISNI:       0000 0004 5358 5575
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Three non-peripherally substituted liquid crystalline bisphthalocyanine (Pc) compounds have been studied to examine the role of central metal ions lutetium (Lu), and gadolinium (Gd) and substituent chain lengths, i.e. octyl (C8H17) and hexyl (C6H13), in determining the physical properties. For the octyl substituted Pc molecules, the head-to-tail or Jaggregates within the as-deposited spun films produced a redshift of the optical absorption Q bands in relation to their 0.01 mgml-1 solutions. Annealing at 80˚C produced a well-ordered discotic liquid crystalline (LC) mesophase causing additional redshifts irrespective of the metal ion in case of C8LuPc2 and C8GdPc2. Formation of face-to-face or H-aggregated monomers led to blueshifts of the Q bands with respect to solution spectra for C6GdPc2, both as-deposited and annealed films. Stretching and bending vibrations of pyrrole, isoindole, and metal-nitrogen bonds in Pc rings showed Raman bands at higher energy for smaller metal ion. However, no change was observed for the difference in chain lengths. As-deposited C8LuPc2 and C6GdPc2 produced comparable Ohmic conductivity, of the value 67.55 Scm-1 and 42.31 Scm-1, respectively. C8GdPc2 exhibited two orders of magnitude less conductivity than the other two due to the size effect of the central ion and side chain length. On annealing, an increase of Ohmic conductivity was noticed in the isostructural octyl substituted phthalocyanines on contrary to a reduced conductivity in hexyl substituted one. An optical band shift of the C8LuPc2 and C8GdPc2 thin films occurred on oxidation by bromine vapour. Oxidations of Pc-coated ITO were also achieved by applying potential at 0.88 V and 0.96 V electrochemically for the C8LuPc2 and C8GdPc2 compounds, respectively. To explore the applications of these compounds in biosensing, in situ interaction studies between bromine oxidised compounds and biological cofactors nicotinamide adenine dinucleotide (NADH) and L-ascorbic acid (vitamin C) were carried out using optical absorption spectroscopy. Thin films of a non-peripherally octyl substituted LC lead phthalocyanine was exposed to 99.9 % pure hydrogen sulfide gas to produce hybrid nanocomposites consisting of lead sulphide quantum dots embedded in the analogous metal free phthalocyanine matrix. Trapping of charge carriers caused hysteresis in the current-voltage characteristics of the film on interdigitated gold electrodes. The charge hopping distance was found to be 9.05 nm, more than the percolation limit and responsible for forming two well-defined conducting states with potential application as a memristor.
Supervisor: Ray, A. K.; Ojeda, J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.619490  DOI: Not available
Keywords: Optimal properties ; Electrical conduction ; Cyclic voltammetry ; Biosensing ; Quantum dots
Share: