Use this URL to cite or link to this record in EThOS:
Title: Development of a wound dressing for detection of bacteria with wound healing properties
Author: Hong, Sung-Ha
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
There has been a significant increase in children’s burns in the past several years and figures indicate that children suffer more burns compared to any other age groups. The main concern following a burn is the possibility of infections. The aim of this project is to construct a unique wound dressing, which enhances healing and stimulates wound closure by incorporation of collagen, as well as signalling the presence of pathogenic bacteria on colonisation. The process of signalling bacterial colonisation was achieved by incorporation of a phospholipid based nanocapsule, with a colourimetric response and a mechanism for release of a dye. This research invested into finding the optimum phospholipid composition to obtain a stable and sensitive system. The signalling device uses the biomimetic aspect of vesicles to signal the presence of pathogenic bacteria via the effect of secreted toxins on the sensor interface. The modified phospholipid based sensors were immobilised into gel matrices and further developed to produce prototype dressings. The healing enhancing property was achieved by a thin layer of collagen coating. This work presents the results obtained from the initial modification process of the sensor, to incorporation of the vesicles into gel matrices through to development of First and Second Generation Prototype dressings. Verification of stability and sensitivity of the vesicles was carried out following each stage of development, using clinically isolated strains of pathogenic bacteria. Initial cytotoxicity and verification of the wound healing property was achieved by in vitro cell assays.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available