Use this URL to cite or link to this record in EThOS:
Title: Aeroacoustic interactions of installed subsonic round jets
Author: Lawrence, Jack
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Additional noise sources are generated when an aircraft engine is mounted beneath a wing. The two main installation sources include: (1) reflection of the exhaust jet mixing noise from the underside of the wing, and (2) interaction between the turbulent jet plume and the trailing edge of the wing, or deployed flap. The strength, directivity and frequency content of these particular sources all serve to increase the time-averaged flyover aircraft noise level heard on the ground by residents beneath the flight path. As the bypass ratio and nacelle diameter of modern turbofan engines continues to increase, constraints on ground clearance are forcing under-wing-mounted engines to be coupled more closely to the wing and flap system, which, in turn, serves to accentuate both of these noise sources. Close-coupled nacelle-airframe designs are now a critical issue surrounding efforts to meet the future environmental targets for quieter civil aircraft. This research is principally aimed at understanding and predicting the groundpropagating noise generated by the latter of these two installed jet noise sources. In order to characterise the jet-surface interaction noise source, however, it is first necessary to isolate it. A small 1/50th model-scale acoustic experiment, therefore, is conducted in a semi-anechoic university laboratory using a single stream jet installed beneath a flat plate. Both far-field acoustic and near-field plate surface pressure data are measured to investigate the jet-surface interaction noise source. Results from this fundamental experiment are then used to help drive a larger, and more realistic, 1/10th modelscale test campaign, at QinetiQ's Noise Test Facility, where 3D wing geometry effects, Reynolds number scaling effects and static-to-flight effects are investigated. A jet-flap impingement tonal noise phenomenon is also identified and investigated at particularly closely-coupled jet-wing configurations. Finally, the first version of a fast, semi-empirical engineering tool is developed to predict the additional noise caused by jet-wing interaction noise, under static ambient flow conditions. It is hoped that this tool will serve to inform future commercial aircraft design decisions and, thus, will help to protect the acoustic environment of residents living beneath flight paths.
Supervisor: Self, Rodney Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC Physics ; TL Motor vehicles. Aeronautics. Astronautics