Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618748
Title: The adoption of laser melting technology for the manufacture of functionally graded cobalt chrome alloy femoral stems
Author: Hazlehurst, Kevin Brian
ISNI:       0000 0004 5355 068X
Awarding Body: University of Wolverhampton
Current Institution: University of Wolverhampton
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Total Hip Arthroplasty (THA) is an orthopaedic procedure that is performed to reduce pain and restore the functionality of hip joints that are affected by degenerative diseases. The outcomes of THA are generally good. However, the stress shielding of the periprosthetic femur is a factor that can contribute towards the premature loosening of the femoral stem. In order to improve the stress shielding characteristics of metallic femoral stems, stiffness configurations that offer more flexibility should be considered. This research has investigated the potential of more flexible and lightweight cobalt chromium molybdenum (CoCrMo) femoral stems that can be manufactured using Selective Laser Melting (SLM). Square pore cellular structures with compressive properties that are similar to human bone have been presented and incorporated into femoral stems by utilising fully porous and functionally graded designs. A three dimensional finite element model has been developed to investigate and compare the load transfer to the periprosthetic femur when implanted with femoral stems offering different stiffness configurations. It was shown that the load transfer was improved when the properties of the square pore cellular structures were incorporated into the femoral stem designs. Factors affecting the manufacturability and production of laser melted femoral stems have been investigated. A femoral stem design has been proposed for cemented or cementless fixation. Physical testing has shown that a functionally graded stem can be repeatedly manufactured using SLM, which was 48% lighter and 60% more flexible than a traditional CoCrMo prosthesis. The research presented in this thesis has provided an early indication of utilising SLM to manufacture lightweight CoCrMo femoral stems with levels of flexibility that have the potential to reduce stress shielding in the periprosthetic femur.
Supervisor: Stanford, Mark Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.618748  DOI: Not available
Keywords: Femoral stem ; functionally graded ; orthopaedic implants ; laser melting ; additive layer manufacturing ; cellular structures ; finite element analysis ; cobalt chrome
Share: