Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618599
Title: Plant tissue culture and artificial seed production techniques for cauliflower and their use to study molecular analysis of abiotic stress tolerance
Author: Rihan, Hail
ISNI:       0000 0004 5354 9478
Awarding Body: University of Plymouth
Current Institution: University of Plymouth
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
A protocol for cauliflower micro-propagule production was developed and optimised for both micropropagation and artificial seed production techniques using meristematic tissues from cauliflower curd. All steps in the protocol were empirically optimised including: blending, sieving, culture methods, liquid culture media composition and plant growth regulator combinations and concentrations. The cost of the micro-propagules could be reduced by as much as 50% on the initial costings reported previously since treatments doubled the number of microshoots produced per culture unit. The research confirmed the suitability of cauliflower microshoots to be encapsulated as artificial seeds and an effective protocol for microshoot encapsulation was designed through the optimization of 1) the production of cauliflower microshoots suitable for encapsulation, 2) encapsulation procedures, 3) artificial seed artificial endosperm structure, 4) conversion materials. The possibility of culturing cauliflower artificial seeds in commercial substrates such as perlite, sand, vermiculite and compost was confirmed. The use of plant preservative mixture (PPM) for the control of contamination in cauliflower culture media and artificial seeds was optimised and the effect of this material on the development of plant material was assessed. It was confirmed that cauliflower artificial seed could be stored in a domestic refrigerator for up to 6 months which could have a great impact in cauliflower breeding programmes. The huge number of cauliflower microshoots that could be produced using this protocol and the homogeneity of the culture system, provided a tool for the molecular analysis of cauliflower microshoots (and artificial seed) abiotic stress tolerance analysis. Various treatments were conducted to improve microshoot cold tolerance and the up-regulation of the CBF/DREB1 transcription factor including low temperature acclimation, mannitol, ABA (abscisic acid) and Mo (molybdenum). Microshoots were confirmed to acclimate successfully using low temperature. Mo was shown to improve the cold tolerance of cauliflower microshoots and to up-regulate CBF/DREB1 in the absence of low temperature acclimation. Acclimation did not increase the accumulation of dehydrin proteins and it is concluded that dehydrins do not play a significant role in the cold tolerance of cauliflower microshoots. Since cauliflower breeding and seed multiplication protocols make extensive use of micropropagation, the studies reported in this research could make a significant impact by decreasing the cost of micropropagation and increasing its reliability. It also opens new perspectives for further research for cauliflower artificial seed production and the possibility of sowing these seeds directly in the field. Furthermore, this research helps to facilitate cauliflower breeding programmes by improving the understanding of abiotic stress tolerance mechanisms and the relationship between different types of abiotic stresses such as cold and drought.
Supervisor: Fuller, Mick Sponsor: Damascus University, Syria
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.618599  DOI: Not available
Keywords: Abiotic stress tolerance ; Artificial seeds ; Cauliflower ; CBF ; Cold tolerance ; Dehydrins
Share: