Use this URL to cite or link to this record in EThOS:
Title: Re-engineering bacterial two-component signalling systems
Author: Blades, Gareth
ISNI:       0000 0004 5354 5477
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Bacteria use Two Component Systems (TCS) to sense and respond to changes in their external environment. TCS are used to navigate to nutrients or away from toxins (chemotaxis) and to adapt to changes in osmolarity (osomosensing). TCS are composed of a histidine protein kinase (HPK) which trans-autophosphorylates in response to environmental change, transferring the phosphoryl group to a cognate response regulator (RR). Phosphorylated RRs modulate an output response such as protein-protein interaction for chemotaxis, and transcription for osmosensing. RRs are composed of a conserved amino terminal REC domain, and where present a variable effector domain. CheY, the chemotaxis RR, contains only a REC domain, whilst OmpR, the osmosensing RR, also contains a DNA binding effector domain. Recently, TCS have been used in synthetic biology applications due to their modularity and conserved signalling mechanism. This thesis aimed to investigate whether it was possible to design a synthetic TCS composed of fused chemotaxis and osmosensing components. Synthetic RRs were designed, fusing the highly conserved REC domains of CheY and OmpR upstream of the OmpR effector domain. REC domains were fused across the α455 region, a region which transmits REC domain phosphorylation into effector domain activation. Synthetic RRs were designed to undergo phosphotransfer to their fused REC domains from the chemotaxis HPK, CheA, activate the attached OmpR effector domain and bind promoter DNA. Four chimeric RRs were created, although only three were structurally viable; F2, F3 and F4. Each fusion bound CheA, and F3 and F4 bound CheA with a significantly higher affinity than CheY. The chimeric RRs could all be phosphorylated byCheA-P; F4 and F3 were phosphorylated to wild-type levels. DNA binding affinitywas investigated with fluorescence anisotropy, hosphorylated and unphosphorylated F3 could not bind promoter DNA. F2 bound promoter DNA regardless of phosphorylation state. These data indicate that phosphorylation of the F2 REC domain does not lead to activation of the effector domain. F2 is likely to be constitutively active suggesting a previously unknown role for OmpR α5 as a mediator of effector domain activation. Furthermore, using a simple fusion approach to design RRs is not a viable method to create a synthetic TCS with a controllable output.
Supervisor: Wadhams, George; Armitage, Judith Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Biochemistry ; Microbiology ; Protein chemistry ; bacteria ; two-component systems ; synthetic biology