Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618430
Title: HR23B, a biomarker for HDAC inhibitors
Author: Khan, Omar Ali
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
As our understanding of cancer biology increases and novel therapies are developed, an increasing number of predictive biomarkers are becoming clinically available. Aberrant acetylation has been strongly linked to tumourigenesis and the modulation of acetylation through targeting histone deacetylase (HDAC) has led to the introduction of many HDAC inhibitors. To date, two have had regulatory approval for the treatment of cutaneous T cell lymphoma (CTCL). Modifications in chromatin control underpin the mechanism of action of HDAC inhibitors. A genome wide loss-of-function screen identified HR23B as a gene that governs sensitivity to HDAC inhibitors. HR23B shuttles ubiquitinated cargo proteins to the proteasome and elevated levels may contribute to cell death mediated by this pathway. It also governs cell sensitivity to drugs that act directly on the proteasome. HDAC inhibitors influence proteasome activity and there may be a synergistic interaction with proteasome inhibitors. HR23B and HDAC6 interact and HDAC6 may be a negative regulator of apoptosis and a positive regulator of autophagy and through its ability to down-regulate HR23B, may impact on the cellular outcome of HDAC inhibitor treatment. Expression of HR23B has been correlated with clinical response to HDAC inhibitors in a retrospective analysis of CTCL patients. The tissue expression of HR23B and the autophagy marker LC3 has been investigated and there may be a reciprocal relationship in their expression in some tumours which may provide prognostic information and patients with low HR23B expression but high levels of autophagy appear to have a particularly poor prognosis. Well designed, biomarker-driven prospective clinical trials are needed to clarify the predictive and prognostic roles of HR23B.
Supervisor: La Thangue, Nicholas B. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.618430  DOI: Not available
Keywords: Medical Sciences ; Clinical laboratory sciences ; Oncology ; Pharmacology ; Tumours ; HDAC inhibitor ; biomarker ; cancer ; apoptosis ; autophagy
Share: