Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618345
Title: Incremental sheet forming process : control and modelling
Author: Wang, Hao
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Incremental Sheet Forming (ISF) is a progressive metal forming process, where the deformation occurs locally around the point of contact between a tool and the metal sheet. The final work-piece is formed cumulatively by the movements of the tool, which is usually attached to a CNC milling machine. The ISF process is dieless in nature and capable of producing different parts of geometries with a universal tool. The tooling cost of ISF can be as low as 5–10% compared to the conventional sheet metal forming processes. On the laboratory scale, the accuracy of the parts created by ISF is between ±1.5 mm and ±3mm. However, in order for ISF to be competitive with a stamping process, an accuracy of below ±1.0 mm and more realistically below ±0.2 mm would be needed. In this work, we first studied the ISF deformation process by a simplified phenomenal linear model and employed a predictive controller to obtain an optimised tool trajectory in the sense of minimising the geometrical deviations between the targeted shape and the shape made by the ISF process. The algorithm is implemented at a rig in Cambridge University and the experimental results demonstrate the ability of the model predictive controller (MPC) strategy. We can achieve the deviation errors around ±0.2 mm for a number of simple geometrical shapes with our controller. The limitations of the underlying linear model for a highly nonlinear problem lead us to study the ISF process by a physics based model. We use the elastoplastic constitutive relation to model the material law and the contact mechanics with Signorini’s type of boundary conditions to model the process, resulting in an infinite dimensional system described by a partial differential equation. We further developed the computational method to solve the proposed mathematical model by using an augmented Lagrangian method in function space and discretising by finite element method. The preliminary results demonstrate the possibility of using this model for optimal controller design.
Supervisor: Duncan, Stephen Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.618345  DOI: Not available
Keywords: Engineering & allied sciences ; Control engineering ; Mechanical engineering ; Mathematical modeling (engineering) ; Partial differential equations ; Incremental sheet forming ; model predictive control ; computational mechanics ; variational inequalities ; finite element method
Share: