Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.617920
Title: The role of the periaxonal space in sustained impulse conduction
Author: Geada Trigo Calheiros De Figueiredo, J. D.
ISNI:       0000 0004 5352 3040
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The axonal ability to sustain impulse conduction highlights the mystery regarding the return pathway of sodium ions after entering the axoplasm, as the axolemmal sodium pump must extrude these ions into the periaxonal space, rather than returning them to the nodal gap. We have explored the pathway taken by these ions using in vivo confocal microscopy to observe axons during sustained impulse activity. Mice transgenically expressing yellow fluorescent protein in some axons were stimulated electrically at physiological frequencies or pharmacologically while observing their axonal structure by confocal imaging. A series of morphological changes ensued, starting with an expansion of the periaxonal space, separating the axolemma from the Schwann cell and compressing the axoplasm. The increase in axoplasmic pressure caused an inflation of the axonal morphology at the paranodes and a herniation of the enclosed axoplasm on either side of the nodal membrane, directed back over the outside of the axon, displacing the paranodes and widening the nodal gap. Concurrently, the fluid in the expanded periaxonal space accumulated into droplets that travelled to the paranode where they escaped by apparently parting the axolemmal attachment of the paranodal loops of myelin. These alterations occurred in virtually all axons, and none occurred in axons treated with sodium channel or sodium pump inhibitors. All these changes reversed spontaneously, and impulse conduction continued throughout.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.617920  DOI: Not available
Share: