Use this URL to cite or link to this record in EThOS:
Title: Treatment of azo dyes in industrial wastewater using microbial fuel cells
Author: Fernando, Eustace
ISNI:       0000 0004 5351 7396
Awarding Body: University of Westminster
Current Institution: University of Westminster
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Due to the extensive use of xenobiotic azo dyes in the colour industry and their proven mutagenic and cytotoxic nature, their treatment prior to discharge is essential and is legally enforced. However, currently used wastewater treatment technologies such as activated sludge systems, anaerobic digestion, electrochemical destruction, adsorption and membrane filtration are ineffective in removing azo dyes due to reasons such as inefficient dye degradation, slow degradation kinetics, toxic metabolite formation, inhibitory costs and generation of secondary waste streams. Therefore, in this study, microbial fuel cells (MFCs) were studied as possible systems that could effectively degrade azo dyes with an additional benefit of concomitant biogenic electricity generation. The co-metabolic degradation of the model azo dye Acid Orange-7 (AO-7) using Shewanella oneidensis and mixed anaerobic cultures in MFC was carried out with particular emphasis on AO-7 degradation kinetics in the initial study. The effect of using various carbon sources including cheaper complex ones such as molasses and corn steep liquor as electron donors for azo dye degradation in MFCs was also investigated. The outcomes of this study demonstrated that fast AO-7 reductive degradation kinetics using cheap, sustainable co-substrate types can be achieved with concomitant bioelectricity generation in two-chamber MFCs. Power densities up-to 37 mWm-2 were observed in the two-chamber MFC system during AO-7 decolourisation. Co-metabolic reductive degradation of azo dye mixtures using dye acclimated mixed microbial populations under industrially relevant conditions (high temperatures and salinities) and changes in microbial community structure in the MFCs in presence of complex azo dye mixtures in two-chamber MFCs was investigated. The outcomes of this work demonstrated that efficient colour and organic content removal can be achieved under high temperatures and moderate salinities using azo dye adapted mixed microbial populations in two-chamber MFCs. Microbial community analysis of the original anaerobic consortium and the azo dye adapted microbial culture following MFC operation indicated that both cultures were dominated by bacteria belonging to the phylum Firmicutes. However, bacteria belonging to phyla Proteobacteria and Bacteroidetes also became selected following MFC operation. Peak power densities up-to 27 mWm-2 were observed in this study during decolourisation of complex azo dye mixtures. The complete degradation of the azo dye AO-7 using a sequential reductive – oxidative bioprocess in a combined MFC-aerobic bioreactor system operating at ambient temperature in continuous mode was studied. The outcomes of this study demonstrated that the azo dye AO-7 can be fully decolourised and degraded into non-toxic and simpler metabolites. Maximum power densities up-to 52 mWm-2 were observed during azo dye degradation. A modular scale-up version (with a volumetric scale-up factor of 6) of the two stage integrated bioreactor system demonstrated the capability to efficiently treat two types of real wastewater originating from colour industry without any apparent deterioration of reactor performance in terms of dye decolourisation and COD removal. The use of applied external resistance (Rext) and redox mediators as tools for enhancing azo dye degradation kinetics in dual chamber MFCs was studied. The outcomes of this work suggest that azo dye reductive degradation kinetics in MFC anodes can be influenced by varying Rext. Furthermore, AO-7 reductive degradation kinetics was improved in a concentration-dependent manner by exogenous addition of two electron shuttling compounds anthraquinone-2,6-disulfonic acid and anthraquinone-2-sulfonic acid in MFC anodes. The overall outcomes of this study implies that MFCs could be successfully applied for achieving enhanced azo dye reductive biodegradation kinetics in MFC anodes coupled with concomitant bioelectricity generation. It further demonstrated that MFC systems can be successfully integrated with existing wastewater treatment technologies such as activated sludge systems for complete degradation and toxicity removal of azo dyes and their biotransformation metabolites.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available