Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616762
Title: Meshless methods for shear-deformable beams and plates based on mixed weak forms
Author: Hale, Jack Samuel Brand
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Thin structural theories such as the shear-deformable Timoshenko beam and Reissner-Mindlin plate theories have seen wide use throughout engineering practice to simulate the response of structures with planar dimensions far larger than their thickness dimension. Meshless methods have been applied to construct numerical methods to solve the shear deformable theories. Similarly to the finite element method, meshless methods must be carefully designed to overcome the well-known shear-locking problem. Many successful treatments of shear-locking in the finite element literature are constructed through the application of a mixed weak form. In the mixed weak form the shear stresses are treated as an independent variational quantity in addition to the usual displacement variables. We introduce a novel hybrid meshless-finite element formulation for the Timoshenko beam problem that converges to the stable first-order/zero-order finite element method in the local limit when using maximum entropy meshless basis functions. The resulting formulation is free from the effects shear-locking. We then consider the Reissner-Mindlin plate problem. The shear stresses can be identified as a vector field belonging to the Sobelov space with square integrable rotation, suggesting the use of rotated Raviart-Thomas-Nedelec elements of lowest-order for discretising the shear stress field. This novel formulation is again free from the effects of shear-locking. Finally we consider the construction of a generalised displacement method where the shear stresses are eliminated prior to the solution of the final linear system of equations. We implement an existing technique in the literature for the Stokes problem called the nodal volume averaging technique. To ensure stability we split the shear energy between a part calculated using the displacement variables and the mixed variables resulting in a stabilised weak form. The method then satisfies the stability conditions resulting in a formulation that is free from the effects of shear-locking.
Supervisor: Baiz Villafranca, Pedro Sponsor: Imperial College London
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.616762  DOI: Not available
Share: