Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615581
Title: Artificial development of neural-symbolic networks
Author: Townsend, Joseph Paul
ISNI:       0000 0004 5346 5063
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Artificial neural networks (ANNs) and logic programs have both been suggested as means of modelling human cognition. While ANNs are adaptable and relatively noise resistant, the information they represent is distributed across various neurons and is therefore difficult to interpret. On the contrary, symbolic systems such as logic programs are interpretable but less adaptable. Human cognition is performed in a network of biological neurons and yet is capable of representing symbols, and therefore an ideal model would combine the strengths of the two approaches. This is the goal of Neural-Symbolic Integration [4, 16, 21, 40], in which ANNs are used to produce interpretable, adaptable representations of logic programs and other symbolic models. One neural-symbolic model of reasoning is SHRUTI [89, 95], argued to exhibit biological plausibility in that it captures some aspects of real biological processes. SHRUTI's original developers also suggest that further biological plausibility can be ascribed to the fact that SHRUTI networks can be represented by a model of genetic development [96, 120]. The aims of this thesis are to support the claims of SHRUTI's developers by producing the first such genetic representation for SHRUTI networks and to explore biological plausibility further by investigating the evolvability of the proposed SHRUTI genome. The SHRUTI genome is developed and evolved using principles from Generative and Developmental Systems and Artificial Development [13, 105], in which genomes use indirect encoding to provide a set of instructions for the gradual development of the phenotype just as DNA does for biological organisms. This thesis presents genomes that develop SHRUTI representations of logical relations and episodic facts so that they are able to correctly answer questions on the knowledge they represent. The evolvability of the SHRUTI genomes is limited in that an evolutionary search was able to discover genomes for simple relational structures that did not include conjunction, but could not discover structures that enabled conjunctive relations or episodic facts to be learned. Experiments were performed to understand the SHRUTI fitness landscape and demonstrated that this landscape is unsuitable for navigation using an evolutionary search. Complex SHRUTI structures require that necessary substructures must be discovered in unison and not individually in order to yield a positive change in objective fitness that informs the evolutionary search of their discovery. The requirement for multiple substructures to be in place before fitness can be improved is probably owed to the localist representation of concepts and relations in SHRUTI. Therefore this thesis concludes by making a case for switching to more distributed representations as a possible means of improving evolvability in the future.
Supervisor: Keedwell, Ed; Galton, Antony Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.615581  DOI: Not available
Keywords: Neural-symbolic integration ; Neural-symbolic reasoning ; SHRUTI ; Artificial development ; Generative and developmental systems ; GDS ; Indirect encoding ; Biological plausibility ; Artificial neural networks ; ANNs ; Logic programs ; Genetic programming ; Evolutionary algorithms ; Artificial intelligence
Share: