Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615429
Title: Probing the brain's white matter with diffusion MRI and a tissue dependent diffusion model
Author: Piatkowski, Jakub Przemyslaw
ISNI:       0000 0004 5367 4690
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
While diffusion MRI promises an insight into white matter microstructure in vivo, the axonal pathways that connect different brain regions together can only partially be segmented using current methods. Here we present a novel method for estimating the tissue composition of each voxel in the brain from diffusion MRI data, thereby providing a foundation for computing the volume of different pathways in both health and disease. With the tissue dependent diffusion model described in this thesis, white matter is segmented by removing the ambiguity caused by the isotropic partial volumes: both grey matter and cerebrospinal fluid. Apart from the volume fractions of all three tissue types, we also obtain estimates of fibre orientations for tractography as well as diffusivity and anisotropy parameters which serve as proxy indices of pathway coherence. We assume Gaussian diffusion of water molecules for each tissue type. The resulting three-tensor model comprises one anisotropic (white matter) compartment modelled by a cylindrical tensor and two isotropic compartments (grey matter and cerebrospinal fluid). We model the measurement noise using a Rice distribution. Markov chain Monte Carlo sampling techniques are used to estimate posterior distributions over the model’s parameters. In particular, we employ a Metropolis Hastings sampler with a custom burn-in and proposal adaptation to ensure good mixing and efficient exploration of the high-probability region. This way we obtain not only point estimates of quantities of interest, but also a measure of their uncertainty (posterior variance). The model is evaluated on synthetic data and brain images: we observe that the volume maps produced with our method show plausible and well delineated structures for all three tissue types. Estimated white matter fibre orientations also agree with known anatomy and align well with those obtained using current methods. Importantly, we are able to disambiguate the volume and anisotropy information thus alleviating partial volume effects and providing measures superior to the currently ubiquitous fractional anisotropy. These improved measures are then applied to study brain differences in a cohort of healthy volunteers aged 25-65 years. Lastly, we explore the possibility of using prior knowledge of the spatial variability of our parameters in the brain to further improve the estimation by pooling information among neighbouring voxels.
Supervisor: Storkey, Amos; Bastin, Mark Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.615429  DOI: Not available
Keywords: diffusion MRI ; white matter ; diffusion tensor
Share: