Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614426
Title: Structural topology optimisation based on the boundary element and level set methods
Author: Ullah, Baseer
ISNI:       0000 0004 5366 461X
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
The research work presented in this thesis is related to the development of structural optimisation algorithms based on the boundary element and level set methods for two and three-dimensional linear elastic problems. In the initial implementation, a stress based evolutionary structural optimisation (ESO) approach has been used to add and remove material simultaneously for the solution of two-dimensional optimisation problems. The level set method (LSM) is used to provide an implicit description of the structural geometry, which is also capable of automatically handling topological changes, i.e. holes merging with each other or with the boundary. The classical level set based optimisation methods are dependent on initial designs with pre-existing holes. However, the proposed method automatically introduces internal cavities utilising a stress based hole insertion criteria, and thereby eliminates the use of initial designs with pre-existing holes. A detailed study has also been carried out to investigate the relationship between a stress and topological derivative based hole insertion criteria within a boundary element method (BEM) and LSM framework. The evolving structural geometry (i.e. the zero level set contours) is represented by non-uniform rational b-splines (NURBS), providing a smooth geometry throughout the optimisation process and completely eliminating jagged edges. The BEM and LSM are further combined with a shape sensitivity approach for the solution of minimum compliance problems in two-dimensions. The proposed sensitivity based method is capable of automatically inserting holes during the optimisation process using a topological derivative approach. In order to investigate the associated advantages and disadvantages of the evolutionary and sensitivity based optimisation methods a comparative study has also been carried out. There are two advantages associated with the use of LSM in three-dimensional topology optimisation. Firstly, the LSM may readily be applied to three-dimensional space, and it is shown how this can be linked to a 3D BEM solver. Secondly, the holes appear automatically through the intersection of two surfaces moving towards each other. Therefore, the use of LSM eliminates the need for an additional hole insertion mechanism as both shape and topology optimisation can be performed at the same time. A complete algorithm is proposed and tested for BEM and LSM based topology optimisation in three-dimensions. Optimal geometries compare well against those in the literature for a range of benchmark examples.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.614426  DOI: Not available
Share: