Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613453
Title: Investigating the feasibility of using focussed airborne ultrasound as tactile feedback in medical simulators
Author: Hung, Gary M. Y.
Awarding Body: Prifysgol Bangor University
Current Institution: Bangor University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Novice medical practitioners commonly practice on live patients in real medical procedures. However, due to the inexperience of the practitioner, mistakes are likely which exposes the patient to undue risk. To improve the training of novices, medical simulators create a virtual patient providing a safe environment for the user to practice within. An important clinical skill is palpation, a physical examination technique. The practitioners use their hands to feel the body of the patient to make diagnosis. A virtual patient has a visual representation but as it is virtual, the patient is not physically present. Haptics technology provide additional benefits to the training session by stimulating the physical sense of touch. A novel technique has recently emerged for stimulating tactile sensation called acoustic radiation pressure from focussed airborne ultrasound. Acoustic radiation creates a focal point of concentrated acoustic pressure in a three-dimensional field producing a force in mid-air. Airborne ultrasound has several advantages over conventional technologies. It was also initially theorised that using airborne ultrasound to simulate palpation compared to a previous system called PalpSim which consists of a rubber tube filled with water permanently embedded in a block of silicone, will offer better controllability over the displayed sensation to simulate various tactile sensations. The thesis has investigated the feasibility of using focussed airborne ultrasound as tactile feedback in medical simulators. A tactile device called UltraSendo was completely custom built to simulate an arterial pulse and a thrill sensation. UltraSendo was integrated with an augmented reality simulator displaying a virtual patient for user interaction. The simulator was brought to Ysbyty Glan Clwyd hospital for user feedback. A wide range of user responses were gathered. The majority of responses felt the arterial pulse was not sufficiently realistic whilst there were higher ratings for the thrill sensation which is acceptably realistic. Positive feedback suggests that airborne ultrasound can indeed provide tactile feedback in a medical context and is better at simulating a thrill sensation compared to a pulse sensation.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.613453  DOI: Not available
Share: