Use this URL to cite or link to this record in EThOS:
Title: Distributed detection, localization, and estimation in time-critical wireless sensor networks
Author: Aldalahmeh , Sami Ahmed Odeh
Awarding Body: University of Leeds
Current Institution: University of Leeds
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
In this thesis the problem of distributed detection, localization, and estimation (DDLE) of a stationary target in a fusion center (FC) based wireless sensor network (WSN) is considered. The communication process is subject to time-critical operation, restricted power and bandwidth (BW) resources operating over a shared communication channel Buffering from Rayleigh fading and phase noise. A novel algorithm is proposed to solve the DDLE problem consisting of two dependent stages: distributed detection and distributed estimation. The WSN performs distributed detection first and based on the global detection decision the distributed estimation stage is performed. The communication between the SNs and the FC occurs over a shared channel via a slotted Aloha MAC protocol to conserve BW. In distributed detection, hard decision fusion is adopted, using the counting rule (CR), and sensor censoring in order to save power and BW. The effect of Rayleigh fading on distributed detection is also considered and accounted for by using distributed diversity combining techniques where the diversity combining is among the sensor nodes (SNs) in lieu of having the processing done at the FC. Two distributed techniques are proposed: the distributed maximum ratio combining (dMRC) and the distributed Equal Gain Combining (dEGC). Both techniques show superior detection performance when compared to conventional diversity combining procedures that take place at the FC. In distributed estimation, the segmented distributed localization and estimation (SDLE) framework is proposed. The SDLE enables efficient power and BW processing. The SOLE hinges on the idea of introducing intermediate parameters that are estimated locally by the SNs and transmitted to the FC instead of the actual measurements. This concept decouples the main problem into a simpler set of local estimation problems solved at the SNs and a global estimation problem solved at the FC. Two algorithms are proposed for solving the local problem: a nonlinear least squares (NLS) algorithm using the variable projection (VP) method and a simpler gird search (GS) method. Also, Four algorithms are proposed to solve the global problem: NLS, GS, hyperspherical intersection method (HSI), and robust hyperspherical intersection (RHSI) method. Thus, the SDLE can be solved through local and global algorithm combinations. Five combinations are tied: NLS2 (NLS-NLS), NLS-HSI, NLS-RHSI, GS2, and GS-N LS. It turns out that the last algorithm combination delivers the best localization and estimation performance. In fact , the target can be localized with less than one meter error. The SNs send their local estimates to the FC over a shared channel using the slotted-Aloha MAC protocol, which suits WSNs since it requires only one channel. However, Aloha is known for its relatively high medium access or contention delay given the medium access probability is poorly chosen. This fact significantly hinders the time-critical operation of the system. Hence, multi-packet reception (MPR) is used with slotted Aloha protocol, in which several channels are used for contention. The contention delay is analyzed for slotted Aloha with and without MPR. More specifically, the mean and variance have been analytically computed and the contention delay distribution is approximated. Having theoretical expressions for the contention delay statistics enables optimizing both the medium access probability and the number of MPR channels in order to strike a trade-off between delay performance and complexity.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available