Use this URL to cite or link to this record in EThOS:
Title: A conceptual system design and managerial complexity competency model
Author: Amaechi, Austin Oguejiofor
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Complex adaptive systems are usually difficult to design and control. There are several particular methods for coping with complexity, but there is no general approach to build complex adaptive systems. The challenges of designing complex adaptive systems in a highly dynamic world drive the need for anticipatory capacity within engineering organizations, with a goal of enabling the design of systems that can cope with an unpredictable environment. This thesis explores this question of enhancing anticipatory capacity through the study of a complex adaptive system design methodology and complexity management competencies. A general introduction to challenges and issues in complex adaptive systems design is given, since a good understanding of the industrial context is considered necessary in order to avoid oversimplification of the problem, neglecting certain important factors and being unaware of important influences and relationships. In addition, a general introduction to complex thinking is given, since designing complex adaptive systems requires a non-classical thought, while practical notions of complexity theory and design are put forward. Building on these, the research proposes a Complex Systems Life-Cycle Understanding and Design (CXLUD) methodology to aid system architects and engineers in the design and control of complex adaptive systems. Starting from a creative anticipation construct - a loosening mechanism to allow for more options to be considered, the methodology proposes a conceptual framework and a series of stages to follow to find proper mechanisms that will promote elements to desired solutions by actively interacting among themselves. To illustrate the methodology, a financial systemic risks infrastructure systems architecture development case study is presented. The final part of this thesis develops a conceptual model to analyse managerial complexity competency model from a qualitative phenomenological study perspective. The model developed in this research is called Understanding-Perception-Action (UPA) managerial complexity competency model. The results of this competency model can be used to help ease project manager’s transition into complex adaptive projects, as well as serve as a foundation to launch qualitative and quantitative research into this area of project complexity management.
Supervisor: Counsell, S. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Leadership communication ; System state ; Early state system design ; Managerial competency ; System factors