Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607373
Title: Studies of Ca2+ handling and electrophysiological properties in murine hearts with genetic modification of plasma membrane Ca2+ ATPase 1
Author: Wang, Yanwen
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
In heart, Ca2+ plays an important role in maintenance of normal cardiac functions. Regulation of Ca2+ is mainly through L-type Ca2+ channel (LTCC), Ryanodine receptor (RyR) and sarcoplasmic reticulum calcium ATPase pump (SERCA) on sarcoplasmic reticulum (SR), Na+-Ca2+ exchanger (NCX), plasma membrane Ca2+ ATPase (PMCA). It has been well-accepted that PMCA plays a minor contribution to elevation of Ca2+ compared to SERCA and NCX and in regulation of cytosolic Ca2+ homeostasis. There are four isoforms of PMCA, PMCA1-4, and PMCA1 is a house-keeping gene, and abundantly distributed in heart. However, the role of PMCA1 in the murine heart has not been fully explored. With a cardiac specific knockout mouse model, the electrophysiological characteristics of PMCA1 in murine hearts, particularly in atria under normal physiological and stress conditions ([Ca2+]o overload and pacing conditions) are investigated. Firstly the complete deletion of PMCA1 in the atria in PMCA1cko mice was confirmed by Western blotting and immunostaining, also the membrane localisation of PMCA1 in the atria in PMCA1loxP/loxP mice was demonstrated. Then the phenotypes of ex vivo whole hearts between PMCA1loxP/loxP and PMCA1cko mice under physiological conditions and [Ca2+]o overload condition and with different frequencies by programmed electrical stimulation (PES) were explored. Further more, the Ca2+ handling process in single atrial myocytes between the PMCA1 deletion mice and control mice under normal physiological conditions and [Ca2+]o overload condition and stimulation with different frequencies was investigated. Finally the Ca2+ handling process in single ventricular myocytes between the PMCA1 deletion mice and control mice under normal physiological condition was investigated. At the whole heart level, the PMCA1cko hearts became more susceptible to arrhythmias with PES under physiological conditions compared with the PMCA1loxP/loxP hearts, and such arrhythmic events occurred more often and had longer pacing durations under Ca2+ overload conditions and higher frequency of pacing. At the single cellular level, the NCX current decay was significantly prolonged in PMCA1cko atrial myocytes under physiological conditions. This was further increased under Ca2+ overload conditions. With frequency-dependent stimulation, the PMCA1cko atrial myocytes showed few EAD- or DAD-type APs under physiological conditions in contrast to PMCA1loxP/loxP atrial myocytes that showed no arrhythmic events. The occurrence increased significantly under Ca2+ overload condition and/or at higher frequency of stimulation. Similar findings were observed in isolated ventricular myocytes. To conclude, the role of PMCA1 in maintaining Ca2+ homeostasis and electrical function in atrial myocytes under physiological conditions is minor. ii) PMCA1 has a critical role in maintaining Ca2+ homeostasis and electrical function in the atrium under stress conditions. This is particularly important during fast efflux of Ca2+ which is required under stress conditions.
Supervisor: Wang, Tao; Lei, Ming Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.607373  DOI: Not available
Keywords: plasma membrane Ca2+-ATPase ; cardiac myocyte ; electrophysiology
Share: