Use this URL to cite or link to this record in EThOS:
Title: Investigating mechanisms of Hepatitis C virus endocytosis
Author: Thorley, Jennifer
ISNI:       0000 0004 5362 5434
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Many viruses exploit and, in some cases, promote host cell endocytic pathways for infection. These pathways include caveolar and clathrin-mediated endocytosis, as well as macropinocytosis. The entry mechanisms of many viruses are not clear cut, with more than one pathway implicated in some cases. Hepatitis C virus (HCV) is a hepatotropic virus associated with liver disease, fibrosis, cirrhosis and hepatocellular carcinoma. There are four co-receptors or “entry factors” for HCV: the tetraspanin CD81, scavenger receptor BI (SR-BI) and the tight junction proteins Claudin 1 (CLDN1) and Occludin (OCLN). Clathrin-dependent endocytosis of HCV has been demonstrated in hepatoma cell lines and has also been shown to be the route of entry for co-receptor CD81; however, other endocytic pathways have not been considered. This thesis investigates a role for caveolae in HCV entry. In addition, it has recently become apparent that the epidermal growth factor receptor (EGFR) is required for viral entry into hepatoma cells and that stimulation with EGF results in increased entry and infection. This thesis investigates the role of EGFR in the endocytosis and trafficking of HCV receptors/entry factors, with a particular focus on CD81, using live-cell and super-resolution imaging techniques.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QR Microbiology ; QR355 Virology