Use this URL to cite or link to this record in EThOS:
Title: Computational neuroscience of natural scene processing in the ventral visual pathway
Author: Tromans, James Matthew
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Neural responses in the primate ventral visual system become more complex in the later stages of the pathway. For example, not only do neurons in IT cortex respond to complete objects, they also learn to respond invariantly with respect to the viewing angle of an object and also with respect to the location of an object. These types of neural responses have helped guide past research with VisNet, a computational model of the primate ventral visual pathway that self-organises during learning. In particular, previous research has focussed on presenting to the model one object at a time during training, and has placed emphasis on the transform invariant response properties of the output neurons of the model that consequently develop. This doctoral thesis extends previous VisNet research and investigates the performance of the model with a range of more challenging and ecologically valid training paradigms. For example, when multiple objects are presented to the network during training, or when objects partially occlude one another during training. The different mechanisms that help output neurons to develop object selective, transform invariant responses during learning are proposed and explored. Such mechanisms include the statistical decoupling of objects through multiple object pairings, and the separation of object representations by independent motion. Consideration is also given to the heterogeneous response properties of neurons that develop during learning. For example, although IT neurons demonstrate a number of differing invariances, they also convey spatial information and view specific information about the objects presented on the retina. A updated, scaled-up version of the VisNet model, with a significantly larger retina, is introduced in order to explore these heterogeneous neural response properties.
Supervisor: Stringer, Simon Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Neuroscience ; Computational Neuroscience ; Psychology ; Experimental psychology ; Perception ; object recognition ; invariance ; ventral visual system ; VisNet