Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.606126
Title: Mechanisms underlying epigenetic gene silencing in maize
Author: Schafer, David Gerald
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Higher organisms can regulate gene expression through changes in epigenetic marks present on the genome. However, how this regulation takes place in organisms with highly repetitive/complex genomes is not well understood. The acquisition of de novo DNA methylation in plants is mediated by siRNAs through the RNAdirected DNA methylation (RdDM) pathway. The targeted deposition of DNA methylation by this pathway allows for the transcriptional silencing of transposable elements and repeat sequences within the genome, as well as regulating gene expression. In addition, it has been hypothesized that mobile siRNAs may be involved in the epigenetic communication between different seed components. Thus the mobility of non-coding RNAs from extra-embryonic tissues could contribute to epigenetic modifications that could be transmitted to the offspring. The aim of my thesis is to characterise the mechanisms involved in epigenetic gene silencing in maize through the use of a novel transgenic reporter. My work has identified components of the RdDM pathway to be involved in maintenance of gene silencing and show that imprinting and paramutation could be recapitulated using synthetic transgenes. In addition, I developed a novel grafting technique to demonstrate that epigenetic gene silencing could be efficiently transmitted between different seed components. Collectively, this work provides an insight into the complex mechanisms that regulate gene expression in the highly repetitive/complex genome of maize.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.606126  DOI: Not available
Keywords: QH426 Genetics ; QK Botany
Share: