Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605907
Title: Integrated electromechanical wind turbine control for power system operation and load reduction
Author: Zhang, Fan
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2013
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
With the penetration level of wind power in electric power networks increasing rapidly all over the world, modern wind turbines are challenged to provide the same grid services as conventional synchronous power plants. The dynamic interaction between wind turbines and grid has to be assessed first before replacing large amount of conventional power plants by wind power. Over the last few years many power system operators have revised their grid codes and established more demanding requirements for wind power connection. In the past, when wind turbines were small, they were allowed to simply disconnect during a grid fault/disturbance. However, as wind turbine size has increased considerably, their fault ride-through capability has to be improved if the penetration of wind power is to be further increased. Wind turbine design and control need to be improved to optimize the compatibility of wind power and the grid. Among the various requirements that wind turbines have to meet, fault ride-through is of great importance and a very challenging one. Grid faults cause transients not only in the electrical system, but also in the wind turbine mechanical system. The dynamic performance of wind turbines is determined by both mechanical and electrical systems. From the mechanical point of view, the grid disturbance adds extra loads on wind turbine components. Severe grid faults may even lead to wind turbine emergency shut-down. From the electrical point of view, wind farms may lose power generation during a grid fault, which deteriorates the fault impact and slows down the fault recovery. Advanced control and active damping is required to improve wind turbine operation and assist it to remain connected during a grid fault. The novelty of this research is the study of the interaction between mechanical and electrical systems of the wind turbine. The detailed modelling of both the wind turbine mechanical and electrical dynamics not only helps to identify possible problems that wind turbines encounter during grid faults, but also allows adopting a combined approach to design the wind turbine controller. This thesis aims at improving the wind turbine fault ride-through capability and the ability of wind turbine to provide network support during grid disturbances. The main contents are as follows: The detailed model of wind turbine and grid including wind turbine mechanical model, wind turbine controller, synchronous and induction generator model, doubly fed induction generator (DFIG) controller and a generic network model are presented; A wind turbine fault ride-through strategy considering structural loads alleviation is proposed; A controller for asymmetrical fault ride-through of DFIG wind turbines is presented; The effect of having Power System Stabilizer (PSS) on wind turbine is investigated. A multi-band PSS controller for DFIG wind turbine is demonstrated.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.605907  DOI: Not available
Share: