Use this URL to cite or link to this record in EThOS:
Title: A W-band gyrotron backward wave oscillator with helically corrugated waveguide
Author: Donaldson, Craig Ross
Awarding Body: University of Strathclyde
Current Institution: University of Strathclyde
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis presents the results of a successful W-band gyrotron backward wave oscillator experiment. Three major achievements presented in this thesis are: 1) The design, simulation, construction and operation of a cusp electron gun; 2) The design, simulation, optimisation, construction and experimental measurement of a W-band helically corrugated waveguide and 3) the operation of the world's first W-band gyro-BWO using both a helically corrugated waveguide and a cusp electron gun. Gyro-BWO interaction with a 2nd cyclotron harmonic axis-encircling annular electron beam was observed. The interaction region was constructed through an accurate electroplating method while the designed dispersion characteristics agreed well to the experimental measurements. The loss through the optimised construction method was low, recorded around 1dB through the frequency range of interest. The following work presents the analytical, numerical and experimental investigation of a proof of principle gyro-BWO experiment. The design, simulation and optimisation of a thermionic cusp electron gun that can generate a 1.5A, 40kV axisencircling electron beam are discussed. Simulations showed a high quality electron beam with ~8% velocity spread and ~10% alpha spread. Experiments were conducted using this electron gun and the accelerating voltage pulse, diode current, transported beam current are presented. The electron beam profile was recorded showing a clear axis-encircling beam image from which the electron beam diameter and alpha values can be measured. Microwave radiation was measured over a frequency range of ~91-100GHz with a approximate maximum power of ~0.37kW. Operating over the magnetic field range 1.79T to 1.9T and measured over a range of alpha values this result was very impressive and proved the successful operation of the gyro-BWO.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available