Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605610
Title: Neural differentiation of human embryonic stem cells
Author: Joannides, Alexis
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2009
Availability of Full Text:
Full text unavailable from EThOS. Please contact the current institution’s library for further details.
Abstract:
Human embryonic stem cells (hESCs) are a potential source of defined cell types for studying early human development and application in regenerative medicine. Realising this potential requires a number of challenges to be overcome. The experimental findings reported represent a systematic approach in establishing controlled and standardised conditions for differentiating hESCs down the neural lineage, and characterising neural derivatives both in vitro and in vivo. Human embryonic stem cell cultures were established from two independently-derived liens, H9 and UES9. A novel, efficient method for propagating hESCs is described, avoiding the use of enzymatic products which may lead to karyotypic instability. Controlled neuroectodermal differentiation is demonstrated using a chemically defined system over a period of 16 days, and this process is shown to be dependent on endogenous fibroblast growth factor (FGF) signalling. Neural progenitors generated with this system are subsequently expanded for over 180 days and shown to retain neural stem cell (NSC) identity at the clonal level. Evidence is provided that hESC-derived NSCs follow a developmentally predictable timecourse of neurogenesis followed by gliogenesis, and their in vitro and in vivo behaviour is characterised with respect to temporal maturation and phenotypic potential.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.605610  DOI: Not available
Share: