Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604477
Title: Micromechanics of stress corrosion cracking in 304 stainless steel and Ni Alloy 600
Author: Stratulat, Alisa
ISNI:       0000 0004 5356 4010
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Restricted access.
Access through Institution:
Abstract:
The current thesis takes a step forward into understanding the intergranular stress corrosion cracking (IGSCC) by applying a relatively new micro-mechanical technique to look at the crack growth rate of individual grain boundaries in 304 stainless steel (SS) and to measure fracture toughness for different grain boundaries in Ni Alloy 600. In addition, a model is tested and proposed that could predict crack initiation in 304 SS. Pentagonal cross-section cantilevers 5 μm wide by 25 μm long were milled at individual grain boundaries in both 304 SS and Ni Alloy 600. The cantilevers milled in 304 SS were tested in-situ in a customised stage, using the nanoindenter. Crack growth rate was measured for two different cantilevers to be approximately 40 μm/s (K = 1.1 MPa(m)^(1/2)) and 120 μm/s (K = 1.7 MPa(m)^(1/2)). Cantilevers were milled in Ni Alloy 600 for three different samples: samples that were exposed to simulated pressurized water reactors (PWR) environment for 4500 h, for 1500 h and un-oxidised samples. The fracture toughness calculated for the fractured cantilevers in samples that were exposed for 4500 h was measured to be between 0.73 and 1.82 MPa(m)^(1/2). No intergranular fracture occurred in the samples that were exposed for 1500 h and in the un-oxidised samples. The grain boundary misorientation was measured for the tested cantilevers but no direct correlation was observed between the misorientation angle and the fracture toughness. A Schmid-modified grain boundary stress (SMGBS) model previously used to study the intergranular behaviour of irradiated 316L steel in supercritical water was applied to predict crack initiation in 304 stainless steel. The model was successfully applied and accurately predicted crack initiation. To extend the model, sensitisation was also included. In addition, different areas of the specimen, including the initiation site were analysed using High resolution electron backscatter diffraction (HR-EBSD) technique to measure the geometrically necessary dislocations (GNDs) density. It was observed that the boundary average GNDs is lower for the intact boundaries and higher for the cracked grain boundaries.
Supervisor: Roberts, Steve; Marrow, James Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.604477  DOI: Not available
Keywords: Materials Sciences ; micro mechanical testing
Share: