Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604446
Title: Prediction of extreme wave-structure interactions for multi-columned structures in deep water
Author: Grice, James Robert
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
With a continuing and rising demand for hydrocarbons, the energy companies are installing infrastructure ever further offshore, where such infrastructure is often exposed to extreme waves. This thesis explores some aspects of wave-structure interaction, particularly the maximum water surface elevation increase in severe storms due to these local interactions. The effects on wave-structure interactions of column cross-sectional shape are investigated using linear and second-order wave diffraction theory. For multi-column structures, the excitation of locally resonant wave modes (near-trapping) is studied for several column cross-sectional shapes, and a simple method for estimating the surface elevation mode shape is given. The structure of the quadratic transfer functions for second-order sum wave elevation is investigated and an approximation assuming these QTFs are flat perpendicular to the leading diagonal is shown to be adequate for the first few lowest frequency modes. NewWave-type focused wave groups can be used as a more realistic model of extreme ocean waves. A Net Amplification Factor based on the NewWave model is given as an efficient tool for finding the incident frequencies most likely to cause a violent wave-structure interaction and where these violent responses are likely to occur. Statistics are collected from Monte Carlo type simulations of random waves to verify the use of the Net Amplification Factor. Going beyond linear calculations, surface elevation statistics are collected to second-order and a `designer' wave is found to model the most extreme surface elevation responses. A `designer' wave can be identified at required levels of return period to help to understand the relative size of harmonic components in extreme waves. The methods developed with a fixed body are then applied to an identical hull which is freely floating, and the responses between the fixed and moving cases are compared. The vertical heave motion of a semi-submersible in-phase with the incident wave crests is shown to lead to a much lower probability of water-deck impact for the same hull shape restrained vertically. The signal processing methods developed are also applied to a single column to allow comparison with experimental results. Individual harmonic components of the hydrodynamic force are identified up to at least the fifth harmonic. Stokes scaling is shown to hold even for the most violent interactions. It is also shown that the higher harmonic components of the hydrodynamic force can be reconstructed from just the fundamental force time history, and a transfer function in the form of a single phase and an amplitude for each harmonic. The force is also reconstructed well to second-order from the surface elevation time history using diffraction transfer functions. Finally, possible causes of damage to a platform high above mean water level in the North Sea are investigated.
Supervisor: Taylor, Paul H.; Eatock Taylor, Rodney Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.604446  DOI: Not available
Keywords: Dynamics and ocean and coastal engineering ; Mechanical engineering ; Mathematical modeling (engineering) ; offshore engineering ; ocean waves ; diffraction ; second-order ; NewWave
Share: