Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604439
Title: Topics in analytic number theory
Author: Maynard, James
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
In this thesis we prove several different results about the number of primes represented by linear functions. The Brun-Titchmarsh theorem shows that the number of primes which are less than x and congruent to a modulo q is less than (C+o(1))x/(phi(q)log{x}) for some value C depending on log{x}/log{q}. Different authors have provided different estimates for C in different ranges for log{x}/log{q}, all of which give C>2 when log{x}/log{q} is bounded. We show in Chapter 2 that one can take C=2 provided that log{x}/log{q}> 8 and q is sufficiently large. Moreover, we also produce a lower bound of size x/(q^{1/2}phi(q)) when log{x}/log{q}>8 and is bounded. Both of these bounds are essentially best-possible without any improvement on the Siegel zero problem. Let k>1 and Pi(n) be the product of k linear functions of the form a_in+b_i for some integers a_i, b_i. Suppose that Pi(n) has no fixed prime divisors. Weighted sieves have shown that for infinitely many integers n, the number of prime factors of Pi(n) is at most r_k, for some integer r_k depending only on k. In Chapter 3 and Chapter 4 we introduce two new weighted sieves to improve the possible values of r_k when k>2. In Chapter 5 we demonstrate a limitation of the current weighted sieves which prevents us proving a bound better than r_k=(1+o(1))klog{k} for large k. Zhang has shown that there are infinitely many intervals of bounded length containing two primes, but the problem of bounded length intervals containing three primes appears out of reach. In Chapter 6 we show that there are infinitely many intervals of bounded length containing two primes and a number with at most 31 prime factors. Moreover, if numbers with up to 4 prime factors have `level of distribution' 0.99, there are infinitely many integers n such that the interval [n,n+90] contains 2 primes and an almost-prime with at most 4 prime factors.
Supervisor: Heath-Brown, D. R. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.604439  DOI: Not available
Keywords: Mathematics ; Number theory ; prime numbers ; sieve methods
Share: