Use this URL to cite or link to this record in EThOS:
Title: Nanoimprint lithography for applications in photovoltaic devices
Author: He, X.
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2010
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
This thesis describes efforts to achieve an idealized architecture and to characterize the transport in polymer-based PV devices, by employing novel nanoimprint techniques. First, a novel double-imprinting process is described, which allows the fabrication of ideally structured “polymer-polymer” and “polymer-small molecule” heterojunctions, with any composition. The dimensions of both phases can be independently tailored to match the respective exciton diffusion length in either phase PV devices with extremely high densities (up to 1014/mm2) of interpenetrating nanoscale columnar features, as small as 25 nm in the active polymer blend layer, were fabricated and showed considerable improvement over the traditional blend devices. It is believed that this work advances the state of the art in polymeric organic electronic devices. Second, a non-conventional nanopatterning technique has been developed and used to fabricate well-aligned vertical ZnO nanowire arrays. This demonstrates the potential for this approach to serve as a nanostructured metal oxide scaffold for “polymer-metal oxide” hybrid PVs, as well as other nanoscaled (opto)electronic devices, due to its attractive electromechanical properties.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available