Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603503
Title: Quantifying the soil community on green roofs
Author: Rumble, Heather
Awarding Body: University of London
Current Institution: University of London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Abstract:
With the majority of people living in cities, innovative solutions for greening the urban environment are necessary to provide ecosystem services such as urban cooling and remediating habitat loss. Green roofs are one potential solution within green infrastructure. Few studies have investigated whether green roofs are a good urban habitat, particularly for soil organisms. The soil food web is vital to above-ground ecosystem processes as it regulates nutrients and can alleviate drought stress, so could be an important but overlooked factor in green roof design. This is the first multi-season study to examine green roof soil organisms in detail, whilst tracking abiotic factors and plant cover. The first part of this thesis characterises the microarthropod and microbial community present on two green roofs in Greater london. It was found that the mite population was dominated by a xerophilic family (Scutoverticidae) and that collembola suffered population crashes in summer. Soil bacteria and fungi were low in abundance, but were more prevalent in dry weather. In general the soil community was impoverished and influenced by drought. The second part of this thesis explores the, use of microbial inoculants to improve the soil community. Bacteria, mycorrhiza and Trichoderma were added to a new and mature roof. On the mature roof, plant growth was not affected by treatments, but collembola populations were higher when Trichoderma were added. On the new roof, inoculants negatively affected plant growth and mite populations, but benefitted collembola. Soi l organisms on the new roof colonised independently and from the Sedum plugs. One species of rarely recorded collembola (Sminthurinu5 trinotatus) colonised early after construction. Planting with Sedum was found to improve the soil community compared to leaving the substrate bare. The results presented here highlight that C.ll rrent green roof designs do not support a functional soil community but that microbial inoculants have the potential to improve them.
Supervisor: Gange, Alan C. Sponsor: Symbio Ltd ; Laverstoke Park Farm
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.603503  DOI: Not available
Share: