Use this URL to cite or link to this record in EThOS:
Title: Studies of p-type semiconductor photoelectrodes for tandem solar cells
Author: Smith, Thomas
ISNI:       0000 0004 5354 6007
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
Photoelectrodes and photovoltaic devices have been prepared via multiple thin film deposition methods. Aerosol assisted chemical vapour deposition (AACVD), electrodeposition (ED), chemical bath deposition (CBD) and doctor blade technique (DB) have been used to deposit binary and ternary metal oxide films on FTO glass substrates. The prepared thin films were characterised by a combination of SEM (Scanning Electron Microscopy), powder X-ray diffraction, mechanical strength tests and photochemical measurements. Nickel oxide (NiO) thin films prepared by AACVD were determined to have good mechanical strength . with a photocurrent of 7.6 μA cm-2 at 0 V and an onset potential of about 0.10 V. This contrasted with the dark current density of 0.3 μA cm-2 at 0 V. These NiO samples have very high porosity with crystalline columns evidenced by SEM. In comparison with the AACVD methodology, NiO films prepared using a combination of ED and DB show good mechanical strength but a higher photocurrent of 24 μA cm-2 at 0 V and an onset potential of about 0.10 V with a significantly greater dark current density of 7 μA cm-2 at 0 V. The characteristic features shown in the SEM are smaller pores compared to the AACVD method. Copper (II) oxide (CuO) and copper (I) oxide (Cu2O) films were fabricated by AACVD by varying the annealing temperature between 100-325°C in air using a fixed annealing time of 30 min. It was shown by photocurrent density (J-V) measurements that CuO produced at 325 °C was most stable and provided the highest photocurrent of 173 μA cm-2 at 0 V with an onset potential of about 0.23 V. The alignment of zinc oxide (ZnO) nano-rods and nano-tubes fabricated by CBD have been shown to be strongly affected by the seed layer on the FTO substrate. SEM images showed that AACVD provided the best seed layer for aligning the growth of the nano-rods perpendicular to the surface. Nano-rods were successfully altered into nano-tubes using a potassium chloride bath etching method. NiO prepared by both AACVD and the combined ED/DB method were sensitized to absorb more of the solar spectrum using AACVD to deposit CuO over the NiO. A large increase in the photocurrent was observed for the p-type photoelectrode. These p-type photoelectrode showed a photocurrent density of approximately 100 μA cm-2 at 0 V and an onset potential of 0.3 V. This photocathode was then used as a base to produce a solid state p-type solar cell. For the construction of the solid state solar cells several n-type semiconductors were used, these were ZnO, WO3 and BiVO4. WO3 and BiVO4 were successfully produced with BiVO4 proving to be the optimum choice. This cell was then studied more in depth and optimised by controlling the thickness of each layer and annealing temperatures. The best solid state solar cell produced had a Jsc of 0.541 μA cm-2 (541 nA) and a Voc of 0.14 V, TX146 made up of NiO 20 min, CuFe2O4 50 min, CuO 10 min, BiVO4 27 min, using AACVD and then annealed for 30 min at 600°C.
Supervisor: Not available Sponsor: EPSRC Supergen PV Consortium (EP/G031088/1)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Photovoltaic devices ; Photoelectrodes ; Aerosol assisted chemical vapour deposition ; AACVD ; Electrodeposition ; ED ; Chemical bath deposition ; CBD ; Doctor blade technique ; DB ; Scanning electron microscopy ; SEM ; Powder X-ray diffraction ; XRD ; Nickel oxide ; Copper (II) oxide ; CuO ; Copper ferrite ; CuFe2O4 ; Bismuth vanadate ; BiVO4 ; Photocathode ; P-type