Use this URL to cite or link to this record in EThOS:
Title: Beamforming optimization for two-way relay channel
Author: Chen, H.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In this thesis, we focus on the optimization of the two-way relay channel (TWRC), which can double the data rate of communications comparing to the traditional one-way relay channel (OWRC). Because of the broadcasting nature of wireless transmissions, secure transmission is an appealing research topic. We take secrecy rate consideration into the optimization of the TWRC. Overall we provide near-optimal solutions for the secrecy rate maximization problems of the TWRC with imperfect channel state information (ICSI). A much lower complexity optimal SOCP solution is provided for SNR balancing of the TWRC without secrecy consideration. We first look at a flat fading TWRC network model with a multiple-input multiple-output (MIMO) relay where perfect channel state information (CSI) is assumed available. We then formulate an optimization problem, with the objective to minimize the relay’s power usage under the constraints that the signal-to-noise ratio (SNR) of the two transceivers should exceed a preset threshold. A low-complexity optimal beamforming solution is provided to this optimization problem by reformulating it in the form of second-order cone programming (SOCP). Later in the thesis, we consider the presence of an eavesdropper and address the beamforming optimization for minimizing the relay’s power with the constraints of the secrecy rates of the two transceivers. A semi-definite programming (SDP) based searching algorithm is proposed to find a near-optimal solution. For each search of the proposed approach, the previous non-convex optimization problem is transferred into an SDP problem, which can guarantee the optimality of the beamforming matrix. Afterwards, more realistic imperfect CSI (ICSI) situations are considered for the TWRC network models. As ICSI completely changes the structure and the property of the optimization problems, we reformulate the optimization problems into two scenarios. For the first case, we consider that the relay is an untrusted eavesdropper and in this case an SDP solution is provided to maximize the joint-decoding sum-secrecy rate. For the second case, we investigate the robust beamforming problems where the relay is trusted but there is an external eavesdropper, another SDP solution is provided to maximize the sum-secrecy rate.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available