Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602623
Title: Observational investigations of the progenitors of supernovae
Author: Lyman, Joseph David
ISNI:       0000 0004 5353 5340
Awarding Body: Liverpool John Moores University
Current Institution: Liverpool John Moores University
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Access through Institution:
Abstract:
Supernovae (SNe) are the spectacular deaths of stars and have shaped the universe we see today. Their far-reaching influence affects the chemical and dynamical evolution of galaxies, star formation, neutron star and black hole formation, and they are largely responsible for most of the heavy elements that make up the universe, including around 90 per cent of the reader. They also provide laboratories of nuclear and particle physics far beyond what we can construct on Earth and act as probes of extreme density and energy. This thesis presents new research into understanding the nature of the progenitor systems of various types of SNe, as well as presenting results that will allow their study to be more productive in the future, through use of automated pipelines and methods to increase the science value of discovered SNe. An environmental study of two peculiar types of transients (‘Calcium-rich’ and ‘2002cx-like’), which may not be true SNe, reveals extremely different ages of the exploding systems that will constrain the current theoretical effort into discovering the progenitor systems. The GRB-SN 120422A/2012bz is investigated and found to be an extremely luminous and energetic SN, even amongst the infamously bright GRB-SNe. A method is presented that allows an accurate reconstruction of the bolometric light curve of a core-collapse SN, which relies on only two optical filter observations – this will hugely reduce the observational cost of constructing bolometric light curves, a tool of great importance when hoping to constrain the nature of a SN explosion and hence its progenitor. Finally, this method is utilised to construct the largest bolometric CCSN bolometric light curve sample to date, and these are analytically modelled to reveal population statistics of the explosions, thus informing on thenature of the progenitors.
Supervisor: Bersier, David; James, Phil Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.602623  DOI: Not available
Share: