Use this URL to cite or link to this record in EThOS:
Title: Ionic liquids and salts for contaminant removal in the petroleum industry
Author: Kuah, Yongcheun
Awarding Body: Queen's University Belfast
Current Institution: Queen's University Belfast
Date of Award: 2013
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
This thesis, separated into Parts A and B, is a combination of work on two projects with overlapping themes. Both projects aimed to design an ionic liquid, or a salt system, to remove deleterious contaminants in the petroleum industry in a green and sustainable manner. In Part A, systematic studies have been conducted to design various salt systems that extract mercury via oxidative complexation, from natural gas and liquid hydrocarbon streams. These compounds were characterised using a wide range of analytical techniques. In the mercury extraction from the gas phase, a remarkable discovery of a custom-designed ionic liquid has led to the successful development of a commercial mercury scrubber (containing 15 tonnes of catalyst) at a PETRONAS Gas Processing Plant in Malaysia. In addition, cheaper binary inorganic systems have also been investigated. These were initially prepared as benchmarks to the ionic liquid systems, but have proved to be effective in their own right. This has (led to the development of a second generation of mercury scrubber, currently. under pilot scale evaluation. For mercury extraction from liquid hydrocarbons, again, two of the systems examined, namely the ionic liquids and binary inorganic salt systems, showed significant activity, and these systems are also currently under pilot scale evaluation. [n Part B, the aim was to develop a novel approach to remove C02 from natural gas streams using ionic liquids. Various ionic liquids were synthesised and characterised using various analytical techniques. Remarkably, these novel systems were found to absorb up to 1.5 mol CO2 per mol of ionic liquid, exceeding the best literature value of equimolar capacity, making them very attractive for further pilot scale testing.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available