Use this URL to cite or link to this record in EThOS: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.600540
Title: The use of spin-pure and non-orthogonal Hilbert spaces in Full Configuration Interaction Quantum Monte-Carlo
Author: Smart, Simon Daniel
ISNI:       0000 0004 5351 6262
Awarding Body: University of Cambridge
Current Institution: University of Cambridge
Date of Award: 2014
Availability of Full Text:
Access through EThOS:
Full text unavailable from EThOS. Please try the link below.
Access through Institution:
Abstract:
Full Configuration Interaction Quantum Monte–Carlo (FCIQMC) al- lows for exact results to be obtained for the ground state of a system within a finite-basis approximation of the Schrödinger equation. Work- ing within imposed symmetry constraints permits dramatic reductions in the size and internal connectivity of the Hilbert space considered, with associated reductions in the computational cost involved, as well as permitting exclusion of the natural ground state to extract a se- ries of excited states of the system. As all converged solutions are ˆ eigenfunctions of the square of the total spin operator, S 2 , as well as the Hamiltonian and the projected spin, imposing spin-purity as an additional ‘symmetry’ is a natural extension. In this thesis, the use of various spin-pure spaces is compared to the previously used determinental spaces. Variations on the FCIQMC al- gorithm which work in non-orthogonal (and non-normalised) basis sets, and with the arbitrary discretisation of imaginary time removed, are considered along with the implications of the differences to the normal FCIQMC algorithm.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.600540  DOI: Not available
Keywords: FCIQMC ; Full Configuration Interaction Quantum Monte Carlo ; Electronic structure ; Full configuration interaction
Share: